In a regular triangular prism, through the center line of the base at an angle of 60 to the plane of the base

In a regular triangular prism, through the center line of the base at an angle of 60 to the plane of the base, a plane is drawn that intersects the lateral edge. Find the cross-sectional area if the side of the base is 4 cm.

Let us denote the prism given by the condition ABCA1B1C1, the prism is regular, at the bases – equilateral triangles.
MK – the middle line, parallel to the BC.
MK = 1/2 * BC = 2 (cm).
P is the point of intersection of the MPK plane and the AA1 lateral edge.
In the triangle ABC we find the height AH (according to the Pythagorean theorem):
AH = √ (AC² – CH²) = √ (16 – 4) = √12 = 2√3 (cm).
RO is the height of the section and the hypotenuse of the RAO triangle.
cos 60 ° = AO / PO → PO = AO / cos 60 ° = √3 / 1/2 = 2√3 (cm).
We find the area of the triangle MRK – the cross-sectional area.
S MPK = 1/2 * MK * PO = 1/2 * 2 * 2√3 = 2√3 (cm²).
Answer: a cross-sectional area of 2√3 cm².




One of the components of a person's success in our time is receiving modern high-quality education, mastering the knowledge, skills and abilities necessary for life in society. A person today needs to study almost all his life, mastering everything new and new, acquiring the necessary professional qualities.

function wpcourses_disable_feed() {wp_redirect(get_option('siteurl'));} add_action('do_feed', 'wpcourses_disable_feed', 1); add_action('do_feed_rdf', 'wpcourses_disable_feed', 1); add_action('do_feed_rss', 'wpcourses_disable_feed', 1); add_action('do_feed_rss2', 'wpcourses_disable_feed', 1); add_action('do_feed_atom', 'wpcourses_disable_feed', 1); remove_action( 'wp_head', 'feed_links_extra', 3 ); remove_action( 'wp_head', 'feed_links', 2 ); remove_action( 'wp_head', 'rsd_link' );