The function is defined by the formula y = -1 / 6x + 2 find 1) the value of the function for argument values equal
The function is defined by the formula y = -1 / 6x + 2 find 1) the value of the function for argument values equal to 12.6, -6,0,1,2, -4, -3, 2) the value of the argument at which the function value is 4,3,0, -1
To solve this problem, we must first substitute the value of the argument, and then the value of the function into the formula y = -1 / 6x + 2.
If x = 12, 6, -6, 0, 1, 2, -4, -3.
1) -1/6 * 12 + 2 = -2 + 2 = 0.
2) -1/6 * 6 + 2 = – 1 + 2 = 1.
3) -1/6 * -6 + 2 = 1 + 2 = 3.
4) -1/6 * 0 + 2 = 0 + 2 = 2.
5) -1/6 * 1 + 2 = -1/6 + 2 = 1 2/3.
6) -1/6 * 2 + 2 = -1/3 + 2 = 1 2/3.
7) -1/6 * -4 + 2 = 2/3 + 2 = 1 1/3.
8) -1/6 * -3 + 2 = 1/2 + 2 = 1.5.
If y = 4, 3, 0, -1.
1) -1 / 6x + 2 = 4;
-1 / 6x = 4 – 2;
-1 / 6x = 2;
x = 2: -1/6 = -12;
2) -1 / 6x + 2 = 3;
-1 / 6x = 3 – 2;
-1 / 6x = 1;
x = 1: -1/6 = -6;
3) -1 / 6x + 2 = 0;
-1 / 6x = 0 – 2;
-1 / 6x = -2;
x = -2: -1/6 = 12;
4) -1 / 6x + 2 = -1;
-1 / 6x = -1 – 2;
-1 / 6x = -3;
x = -3: -1/6;
x = 18.