# The height of a regular quadrangular pyramid is 4 m, and the diagonal of the base is 10 m.

The height of a regular quadrangular pyramid is 4 m, and the diagonal of the base is 10 m. Find the area of its lateral surface.

Since the pyramid is regular, there is a square at its base, and all sides at the base are equal.

AB = BC = CD = AD.

Consider a right-angled triangle ACD, according to the Pythagorean theorem AC ^ 2 = AD ^ 2 + D ^ 2 = 2 * AD ^ 2.

AD ^ 2 = AC ^ 2/2 = 100/2 = 50.

AD = 5 * √2 cm.

Let’s draw the height О1Н in the triangle DО1С, which will be equal to half of the side of the base of the pyramid.

О1Н = АD / 2 = 5 * √2 / 2 cm.

Let’s draw an apothem OH and consider a right-angled triangle OO1H.

By the Pythagorean theorem OH ^ 2 = OH1 ^ 2 + OH ^ 2 = 16 + ((5 * √2) / 2) ^ 2 = (64 + 50) / 4 = 114/4.

OH = √114 / 2 cm.

The lateral surface area of ​​a regular pyramid is equal to the product of the half-perimeter and the apothem.

Sside = p * L = (4 * 5 * √2) * (√114 / 2) / 2 = 5 * √288 = 10 * √72 cm2.

Answer: Side = 10 * √72 cm2. One of the components of a person's success in our time is receiving modern high-quality education, mastering the knowledge, skills and abilities necessary for life in society. A person today needs to study almost all his life, mastering everything new and new, acquiring the necessary professional qualities.