Calculate the area of the figure bounded by the lines: a straight line passing through the points

Calculate the area of the figure bounded by the lines: a straight line passing through the points (1; 0) and (0; –3); f (x) = – x ^ 2 + 4x-3

Let us calculate the equation of the straight line passing through these points.

Because the general equation of the straight line is y (x) = k * x + b, then we get the system of equations:

k + b = 0 and b = -3, whence we find k = 3.

Therefore, the desired equation of the straight line is y (x) = 3 * x – 3.

We find the abscissas of the intersection points of the straight line and the parabola, we get:

-x² + 4 * x – 3 = 3 * x – 3,

x² – x = 0,

x * (x – 1) = 0, whence x = 0 and x = 1.

Having completed the schematic construction of both graphs, we get that the parabola is located above the straight line, so the required area is:

s = integral (0 to 1) (-x² + 4 * x – 3 – 3 * x + 3) dx = integral (0 to 1) (-x² + x) = 1/2 – 1/3 = 1 / 3 units ².




One of the components of a person's success in our time is receiving modern high-quality education, mastering the knowledge, skills and abilities necessary for life in society. A person today needs to study almost all his life, mastering everything new and new, acquiring the necessary professional qualities.

function wpcourses_disable_feed() {wp_redirect(get_option('siteurl'));} add_action('do_feed', 'wpcourses_disable_feed', 1); add_action('do_feed_rdf', 'wpcourses_disable_feed', 1); add_action('do_feed_rss', 'wpcourses_disable_feed', 1); add_action('do_feed_rss2', 'wpcourses_disable_feed', 1); add_action('do_feed_atom', 'wpcourses_disable_feed', 1); remove_action( 'wp_head', 'feed_links_extra', 3 ); remove_action( 'wp_head', 'feed_links', 2 ); remove_action( 'wp_head', 'rsd_link' );