# In a geometric progression, the sum of the first and second terms is 15, and the second

In a geometric progression, the sum of the first and second terms is 15, and the second and third terms are 30. Find the first 3 terms.

Let us denote by b1 the first term of this geometric progression, and by q the denominator of this geometric progression.

In the condition of the problem it is said that the sum of the first and second members of this progression is 15, and the sum of the second and third members of this progression is 30, therefore, we can compose the following equations:

b1 + b1 * q = 15;

b1 * q + b1 * q ^ 2 = 30.

We solve the resulting system of equations.

Dividing the second equation by the first, we get:

(b1 * q + b1 * q ^ 2) / (b1 + b1 * q) = 30/15;

q = 2.

Substituting the found value q = 2 into the equation b1 + b1 * q = 15, we get:

b1 + b1 * 2 = 15;

3b1 = 15;

b1 = 15/3;

b1 = 5.

Find b2:

b2 = b1 * q = 5 * 2 = 10.

Find b3:

b3 = b2 * q = 10 * 2 = 20.

Answer: The first term is 5, the second term is 10, the third term is 20.

One of the components of a person's success in our time is receiving modern high-quality education, mastering the knowledge, skills and abilities necessary for life in society. A person today needs to study almost all his life, mastering everything new and new, acquiring the necessary professional qualities.